www.epilepsy.va.gov/Statistics

Statistics in Evidence Based Medicine

Lecture 7: Research Questions for Two Groups

Rizwana Rehman, PhD

Regional Statistician Southeast Epilepsy Center of Excellence Durham VA Medical Center, Durham NC

Rizwana.Rehman@va.gov (919)286-0411 ext: 5024

Summary of One Group Methods

Nature of problem	Test
Interval & normal	One –sample t test
Ordinal or interval, non normal	Sign test
Dependent groups; interval & normal	Paired t test
Dependent groups; ordinal or interval	Wilcoxon signed rank test, Sign test
Single proportion	z approximation, exact binomial
Dependent groups; proportion	McNemar

- Difference of means in two normally distributed groups
- Nonparametric test for two independent means
- Statistical difference between computed proportions
- Fisher's Exact test

Normal Data with Same Standard Deviations

- Are two studied groups from the same population?
- t test is used for quantitative data under the following assumptions.
 - Both samples are normally distributed.
 - Both come from distributions with same value of standard deviation.
 - Observations are independent of each other.

$$t = \frac{\overline{X}_1 - \overline{X}_2}{\sqrt{\frac{S_p}{n_1} + \frac{S_p}{n_2}}} \text{ with } n_1 + n_2 - 2 \text{ d.f. } s_p \text{ is pooledSD.}$$

Why Assumptions Matter?

- When assumptions are not met, α increases.
 - If t test is used on highly skewed data with less than 30 observations, then confidence intervals are erroneously narrow and p value is smaller than it should be.
 - Same happens when observations are not independent due to less effective sample size.
 - Similarly pooled SD is not accurate if standard deviations are markedly different increasing type
 I error rate.

How To Check for Assumptions?

- Normality
 - For large data sets normality does not matter
 - For small data
 - Eyeball data sets
 - A normality test can be run
- Independence
 - One's decision
- Equal standard deviations
 - For equal sample sizes equal SD is not needed.
 - If ratio of larger to smaller SD is less than 2, OK
 - Run a test such as F test for equal variance

What if Standard Deviations are Different?

- If standard deviations are noticeably different, then use another approximate test by Sattherwaite also known as Welch test.
- Openstat gives results for both equal and unequal standard deviations.

Openstat for Two Independent Means

Assume that FEV₁ levels for following data are normally distributed. Are FEV₁ levels different in two groups?

Asthmatics' FEV_1 : $n_1 = 5$, $\bar{x}_1 = 1.86$, $s_1 = 0.378$

Controls'FEV₁: $n_2 = 6, \overline{x}_2 = 2.51, s_2 = 0.210$

Medical Statistics A Common Sense Approach A5

Two Independent Groups t Test in Openstat

 H_0 : $\mu 1 = \mu 2$

 H_{Δ} : $\mu 1 \neq \mu 2$

Entering Data in Openstat

Results from Openstat

```
Results Window
8 8 8
         26 B A
                                                               Return
COMPARISON OF TWO MEANS
Variable Mean Variance Std.Dev. S.E.Mean N
Group 1 2.51 0.04
                          0.21 0.09 6
Group 2 1.86 0.15 0.39 0.17 5
Assuming equal variances, t = 3.557 with probability = 0.0061 and 9 degrees of
freedom
             0.65 and Standard Error of difference = 0.18
Difference =
Confidence interval = ( 0.24, 1.06)
Assuming unequal variances, t = 3.365 with probability = 0.0154 and 5.92
degrees of freedom
             0.65 and Standard Error of difference =
Difference =
                                                    0.19
Confidence interval = ( 0.18, 1.12)
F test for equal variances = 3.396, Probability = 0.1062
NOTE: t-tests are two-tailed tests.
```

Reject H₀, means in two groups are statistically significantly different

Mean Difference for Non Normal Data

- Use Mann-Whitney using the following assumptions.
 - Data are ordinal or continuous.
 - Two groups are independent.
 - Two groups are symmetrically distributed.
- Can be used for median or mean.
- As powerful as t test.

Mann- Whitney U Test for n_1 , $n_2 \ge 10$

- Combine both data sets and rank them in increasing order. Break for ties.
- Separate the ranks in each group and add ranks for each group.
- Call the smaller rank T and smaller group size n_1
- Use z approximation

$$z = \frac{|T - n_1(n_1 + n_2 + 1)/2|}{\sqrt{n_1 n_2(n_1 + n_2 + 1)/12}}$$

For smaller samples use tables

Example of Non Normal data

H₀: New treatment B does not change the plasma globulin.

H_A: New treatment B changes the plasma globulin.

Plasma <u>g</u>	Jobul	in frac	tion a	fter ra	indom	izatio	n to t	eatmo	ents A	or B
Treatment A	38	26	29	41	36	31	32	30	35	33
Treatment B	45	28	27	38	40	42	39	39	40	45

Statistic at Square One: Chapter 10

Symmetry

Plasma globulin fraction after treatments A or B with mean values.

Statistic at Square One: Chapter 10

Mann –Whitney in Openstat

Entering Data for Analysis

Getting Results

Results

Results (cont'd)

Results Window			
	Ж 🔁 🕦 A		Return
35.00	10.00	1	
36.00	11.00	1	
38.00	12.50	2	
38.00	12.50	1	For two tailed test
39.00	14.50	2	rui two talleu test
39.00	14.50	2	
40.00	16.00	2	<i>p</i> ≈0.076, can't reject H
41.00	17.00	1	$\rho \sim 0.070$, can the jetting
42.00	18.00	2	
45.00	19.50	2	
45.00	19.50	2	

Sum of Ranks in each Group Group Sum No. in Group

1 81.50 10 2 128.50 10

No. of tied rank groups = 3Statistic U = 26.5000z Statistic (corrected for ties) = 1.7764, Prob. > z = 0.0378z test is approximate. Use tables of exact probabilities in Siegel. (Table J or K, pages 271-277)

Questions About Independent Proportions

- Test the hypothesis of equal proportions using the approximate z test.
- Test the hypothesis of expected frequencies using a chi-square test.

z Test for Independent Proportions

 We use the standard normal or z distribution as an approximation to binomial distribution for difference of proportions

$$z = \frac{p_1 - p_2}{\sqrt{p(1-p)(1/n_1 + 1/n_2)}}$$

p is pooled or average proportion.

Example of Independent Proportions

		Scre		
		Yes	No	Total
Previuos domestic	Yes	175	27	202
violence (DV) training	No	155	111	266

Basic & Clinical Biostatistics: Chapter 3

Openstat for z Approximation

Entering Data

Getting Results

--> Test for the Difference Between Two Independent Proportions

```
Sample 1: Frequency = 175 for 202 cases.

Sample 2: Frequency = 155 for 266 cases.

Proportion 1 = 0.8663 Proportion 2 = 0.5827 Difference = 0.2836

Standard Error of Difference = 0.0426

z test statistic = 6.6649 p-value = -0.0000 two-tailed

z value for confidence interval = 1.9600

Confidence Interval 95% = (0.2002,0.3670)
```

Reject H₀, there is a statistically significant difference in proportions of two groups of physicians.

Chi-Square for DV Example

We can answer two questions with one chi-square test using a two by two table.

- 1) Is there a difference in proportions of physicians who screen and who don't screen for DV?
- 2) Is there a relationship (dependency) between a physician's prior DV training & whether the physicians screen for DV?

- The frequencies in two by two table are considered fixed known an marginal frequencies.
- Assuming rows and columns are independent, we calculate the expected frequencies that can occur by chance alone.
- The Chi-Square test compares the observed frequencies with expected frequencies. For no relationship, expected and observed should be close.
- For a two by two table a chi-square statistic has one degree of freedom.

Assumptions of χ^2

- Sample size for two by two table is sufficiently large, total greater than 20.
- Expected value (not the original frequency) in any cell of two by two table is greater than 5.
- The data are independent.

What Happens if Assumptions are Violated?

- The type II error rate β increases if chisquare is conducted on a smaller sample size.
- Can use Yates' continuity correction for small samples.
- Can use Fisher's exact test for small samples.

DV Example in Openstat

№ Оря	№ OpenStat Nov. 20, 2010															
FILES	VAR.	IABLES	EDIT	ANAI	LYSES	SIMULATI	ION	UTILITIE	:S OF	PTIONS	HELF)				
ROW 4		3 CO	L.		Cell E c	lit (Return to 00	o finis	h) N C	ASES	No. VA	AR.S	AS [1:				
0		ROW		COL		Freq.										
1		1.00		1.00		175.00										
2		1.00		2.00		2.00		2.00		27.00						
3		2.00		1.00		155.00										
4		2.00		2.00		111.00										

Chi-Square in Openstat

Getting Results

Chi-Square Results

Results Window					
	Be				
COL. 1 COL. 2 Total					
Row 1 175 27 202 Row 2 155 111 266 Total 330 138 468					
EXPECTED FREQUENCIES					
Expected Values	Reject H ₀ , there is a difference in				
CHI-SQUARED VALUE FOR CELLS					
Chi-square Values COL. 1 COL. 2 Row 1 7.445 17.803 Row 2 5.654 13.520	proportions of two groups of physicians.				
Chi-square = 44.421 with D.F. = 1. Prob. > ∨alue = 0.000					

- Distribution of a categorical variable in one sample can be compared with distribution of a categorical variable in another sample.
- Chi-Square can be used to compare an observed data with a theoretical distribution.
- Can be used to test difference between two counts.
- Can be extended to look at the effect of more than one input variable.

Deaths in six months after fractured neck of femur in a						
specialised orthopedic ward (A) and a general ward (B)						
		Ward				
		Α				
Deaths	Yes	2	6	8		
Deatils	No	18	14	32		

Medical Statistics A Commonsense Approach A8

20

20

40

Total

H₀: There is no difference in deaths for two wards.

Fisher's Exact in Openstat

Entering Data

Results

Fisher Exact Probability Test

Accumulating Values of the Hypergeometric Distribution

Contingency Table for Fisher Exact Test

Column
Row 1 2
1 2 6
2 18 14
Probability = 0.0958

Cumulati∨e Probability = 0.0958

Contingency Table for Fisher Exact Test

Column
Row 1 2
1 1 7
2 19 13
Probability = 0.0202

Results Cont'd

Cumulati∨e Probability = 0.1159

Contingency Table for Fisher Exact Test

	Colui	mn				
Row	1	2				
1	0	8				
2	20	12				
Probability = 0.0016						

Two tailed *p*≈0.23 can't reject H₀

Cumulati∨e Probability = 0.1176

Tocher ratio computed: 0.295

A random ∨alue of 0.549 selected was greater than the Tocher ∨alue.

Conclusion: Accept the null Hypothesis

Chi-squared = 2.500 with 1 d.f. and prob. > chi-square = 0.1138

Summary of Two Groups Methods

Nature of problem	Test
Interval & normal	Two independent sample t
Ordinal or interval, non normal	Mann-Whitney U
Independent Proportions	Z approximation
Independent proportions large sample size	Chi-Square
Independent Proportions small sample size	Fisher's Exact

www.epilepsy.va.gov/Statistics

Questions/Comments

Rizwana.Rehman@va.gov

(919) 286-0411 ext: 5024

Next lecture's highlights
Study Designs, Odds Ratio, Relative Risk