www.epilepsy.va.gov/Statistics

Statistics in Evidence Based Medicine

Lecture 6: Research Questions for One Group

Rizwana Rehman, PhD

Regional Statistician Southeast Epilepsy Center of Excellence Durham VA Medical Center, Durham NC

Rizwana.Rehman@va.gov (919)286-0411 ext: 5024

- C.I provides information about statistical significance as well as the direction and strength of the effect.
- Hypothesis testing using p value allows for a rapid decision for statistical significance, however this is an overly simplistic approach.
- The two statistical concepts are complimentary.

- Does our computed mean differ from the typical?
- Is mean difference in variable of interest for before/after study statistically significant?
- How can we test for normality in Openstat?
- Does our computed proportion differ from the typical?
- Is difference in proportions for our before and after study statistically significant?

One Mean with Normal Data

- Is our computed mean statistically different from the typical?
- We use t test for quantitative data under the following assumptions.
 - Our data are normally distributed.
 - Observations are independent of each other.

•
$$t = \frac{\overline{X} - \mu}{sd/\sqrt{n}}$$
 with $n - 1$ d.f.

- When assumptions are not met, type I error rate α increases.
 - If we use t test on highly skewed data with less than 30 observations, then CI are erroneously narrow and p value is smaller than it should be.
 - Same happens when observations are not independent due to less effective sample size.

How to Check for Assumptions?

- Normality
 - For large data sets normality does not matter
 - For small data
 - Prior knowledge of variable
 - Eyeball your data
 - Can run a normality test
- Independence
 - Decide yourself

Estimation of plasma calcium concentration in 18 patients (ages 20-44) with Everley's syndrome gave a mean of 3.02mmol/l, with standard deviation 1.1mmol/l.

previous studies showed that the mean was commonly close to 2.5 mmol/l in healthy people aged 20-44. Assume that the data are plausibly normally distributed. Is the mean in these patients abnormally high?

Statistics at Square One; Chapter 7

Openstat for Everley's Syndrome Example

http://www.statprograms4u.com/

 H_0 : $\mu = 2.5 \text{ mmol/l}$

 H_{Δ} : $\mu \neq 2.5 \text{ mmol/l}$

Entering Data in OpenStat

Results from OpenStat

Results Window

ANALYSIS OF A SAMPLE MEAN

```
Sample Mean = 3.200
Population Mean = 2.500
Sample Size = 18
Standard error of Mean = 0.259
t test statistic = 2.700 with probability 0.015
t value required for rejection = 2.110
Confidence Interval = (2.653, 3.747)
```

Reject H₀, mean in this sample is unusually statistically high

Mean difference for Before and After Study for Normal Data

- The test is derived from the single sample t test, using the following assumptions.
 - The data are quantitative.
 - The distribution of the differences (not the original data) is plausibly normal.
 - The differences are independent of each other.

$$t = \frac{\overline{d} - \delta}{s d_d / \sqrt{n}}$$
 with $n - 1$ d.f.

Example of Normal Paired Data

FEV₁ from five asthmatics, before and after use of a bronchodilator (liters/sec) with normally distributed data

Before	After
1.5	1.7
1.7	1.9
2.1	2.2
1.6	1.9
2.4	2.4

Medical Statistics A Commonsense Approach: Appendix I

$$H_0$$
: μ_1 - μ_2 = 0

$$H_A$$
: $\mu_1 \neq \mu_2$

Paired t Test in OpenStat

Entering Data for Analysis

Analysis from OpenStat

Results Window

NOTE: t-tests are two-tailed tests.

Return

COMPARISON OF TWO MEANS

```
Variable Mean Variance Std.Dev. S.E.Mean N
VAR1 1.86 0.14 0.38 0.17 5
VAR2 2.02 0.08 0.28 0.12 5
Assuming dependent samples, t = -3.138 with probability = 0.0349 and 4 degrees of freedom Correlation between VAR1 and VAR2 = 0.986
Difference = -0.16 and Standard Error of difference = 0.05
Confidence interval = ( -0.30, -0.02)
t for test of equal variances = 3.307 with probability = 0.0455
```

The difference in means is statistically significant

Dependent Non-Normal Data

- Use Wilcoxon test under the following assumptions.
 - The paired differences are independent.
 - The differences come from a symmetrical distribution.
- Wilcoxon test can be used for mean & median.
- As powerful as t test.
- For n ≥ 10, we have a formula, for n < 10, use tables.

Wilcoxon Test for n ≥10

- Find the absolute differences between paired observations X_a and X_b. Omit zeros if any.
- Rank the absolute differences breaking for ties.
- Attach positive sign if $X_b > X_a$ and negative sign if $X_b < X_a$.
- Sum positive and negative values; there will be two ranks, positive rank and negative rank.
- The smaller of two is denoted by T.

$$z = \frac{|T - n(n+1)/4|}{\sqrt{n(n+1)(2n+1)/24}}$$

Fetal Movements Before and After Chorionic Villus Sampling

Statistics at Square One: Chapter 10

Patient no (1)	Before (2)	After (3)	Difference (4)
1	25	18	7
2	24	27	-3
3	28	25	3
4	15	20	-5
5	20	17	3
6	23	24	-1
7	21	24	-3
8	20	22	-2
9	20	19	1
10	27	19	8

H₀: Chorionic villus sampling does not alter the percentage of time a fetus spends in moving

Dot Plot of Difference

Figure 10.1 Plot of differences in fetal movement with mean value

Box Plot of Difference in OpenStat

BOXPLOT FOR : Temporary.TEX RED: mean, BLACK: median, BOX: 25th to 75th percentile, WISKERS: 10th and 90th percentile 10.50-9.70 8.90 8.10 7.30 6.50 5.70 4.90 4.10 3.30 2.50 1.70 0.90 0.10 -0.70-1.50-2.30-3.10 -3.90 -4.70-5.50GROUPS:

Comparison to Normal Distribution

nStat Nov. 20,	2010			
/ARIABLES EDIT	ANALYSES SIMULATION UTILITIES	OPTIONS HELP		
COL.	Descriptive •	Central Tendency, Variability		
1	Comparisons •	Frequencies		
	Analyses of Variance ▶	Cross Tabulation		
Difference	Correlation •	Breakdown		
	Multiple Regression 🕨	Normality Tests		
7.0	Interrupted Time Series Analysis	X Versus Y Plot		
-3.0	Multivariate •	Group (integer) Frequency Charts		
	Nonparametric •	Repeated Measures Bubble Plot		
3.0	Measurement •	QQ or PP Plot		
-5.0	Matrix Manipulation	Smooth Data by Averaging		
	Statistical Process Control 🕒 🕨	Compare Two Distributions		
3.0	Financial •	Compare Observed to Theoretical Distribution		
-1.0	Neural Network	Three Dimension Rotation		
	Linear Programming (SIMPLEX)	Box Plots		
-3.0		X versus Multiple Y Plot		
-2.0		Stem and Leaf Plot		
1.0		Multiple Group X versus Y Plot		
1.0				
8.0				

Comparison to Normal Distribution

Comparison

Wilcoxon's Test in OpenStat

Selecting Variables for Analysis

Results of Wilcoxon's test

Results Window

The Wilcoxon Matched-Pairs Signed-Ranks Test See pages 75-83 in S. Seigel's Nonparametric Statistics for the Social Sciences

Ordered Cases with cases having 0 differences eliminated:

Number of cases with absolute differences greater than 0 = 10

CASE	Before	Aπter	Differ	ence	Signe
6	23.00	24.00	-1.00	-1.50	1 1
9	20.00	19.00	1.00	1.50	V
8	20.00	22.00	-2.00	-3.00	
2	24.00	27.00	-3.00	-5.50	1
7	21.00	24.00	-3.00	-5.50	V
3	28.00	25.00	3.00	5.50	
5	20.00	17.00	3.00	5.50	d
4	15.00	20.00	-5.00	-8.00	
1	25.00	18.00	7.00	9.00	
10	27.00	19.00	8.00	10.00	
I					

We conclude that villus sampling doesn't alter the fetal movement.

Smaller sum of ranks (T) = 23.50

Approximately normal z for test statistic T = 0.408

Probability (1-tailed) of greater z = 0.3417

NOTE: For N < 25 use tabled values for Wilcoxon Test

Sign Test for Asymmetrical Data

- Can be used for matched pairs of sample data.
- Can be used for a claim about population median against a hypothesized value m.
- Less powerful than Wilcoxon test.
- OpenStat provides Sign test for paired data.

Pronethalol for the Prevention of Angina Pectoris

an introduction to medical statistics by Martin Bland

# of Attacks on Placebo	# of Attacks on Pronethalol	Difference	Sign of Difference
71	29	42	+
323	348	-25	-
8	1	7	+
14	7	7	+
23	16	7	+
34	25	9	+
79	65	14	+
60	41	19	+
2	0	2	+
3	0	3	+
17	15	2	+
7	2	5	+

H₀: Placebo and Pronethalol have the same effect on angina

Selecting Sign Test in Openstat

Selecting Variables for Analysis

Results

FILE: Temporary.TEX

🙌 start

🔇 🌃 67° 隆 👀 🛸 🏫 🐼 🥬 🗾 10:28 PM

Tests of Normality in OpenStat

11

12

13

14

15

16

17

18

19

20

7.0

7.0

8.0

10.0

20.0

22.0

25.0

27.0

33.0

40.0

H₀: Data are normally distributed.

Lilliefors and Shapiro-Wilk W tests

Problems with Normality Tests

- Small samples almost always pass a normality test.
- With large samples, the test may be significant but results of t test are still valid.
- Decisions about using parametric vs. nonparametric tests should be made to cover an entire series of analyses.

Questions about One Proportion

 We use the standard normal or z distribution as an approximation to binomial distribution for proportion

$$z = \frac{p - \pi}{\sqrt{\pi(1 - \pi)/n}}$$

Example of a Proportion

Frey and colleagues wanted to examine the efficacy of different dilutions of smallpox vaccine. The group that received the 1:10 dilution (n=340) had a success rate of 97.1%. Investigators wanted to know if this success rate was greater than 95%.

Basic & Clinical Biostatistics: Chapter 5

 $H_0: \pi \le 0.95$

 H_{Δ} : $\pi > 0.95$

One Proportion Problem in Openstat

Computations

Results

The proportion of patients with a positive vaccination is greater than 95%.

Difference in Proportions of Paired Data

Use McNemar's test for difference in proportions

$$H_0$$
: $\pi_1 = \pi_2$

$$McNemar = \frac{(|b-c|)^2}{b+c}$$

Example of Paired Proportions

Researches wanted to know whether changes occurred in the bowel function of patients following cholecystectomy. They collected information on # of patients who had one or fewer vs. more than one stool per day.

1 month after CHE

		≤1	>1	1	Total
Before CHE	≤1	2	5	15	40
	>1		0	11	11
	Total	2	5	26	51

Basic & Clinical Biostatistics: Chapter 5

OpenStat for McNemar's Test

Entering Data

Data Entry By: Values Entered On This Form Values in the Data Grid Frequencies Var. 2 Var. 2 1 11 Var. 2 1 Var. 2 Var.

Results from OpenStat

Results Window

COMPARISON OF TWO PROPORTIONS

```
--> McNemar Test (Test for the Difference Between two Correlated Proportions)
```

```
Sample
         0 1
                  sum
       25 15
                  40 I
      -----
 1
                  11 |
             11
    1 | 0
sum
        25
            26
                 51 I
```

```
Chi-Square statistic = 15.0000 p-value two-tailed =0.0001
```

Chi-Square statistic with Continuity Correction = 13.0667 p-value two-tailed =0.0003

Binomial p-value for the two-tailed exact test =0.0000

Proportion of zeros in Sample 1 =0.7843 Proportion of zeros in Sample 2 =0.4902 51 cases Difference in proportions = 0.2941 Standard Error of Difference = 0.0638 z value for confidence interval =1.9600 |Confidence Interval 95% = (0.1691,0.4192)

Results in Bigger Font

Results in Bigger Font (cont'd)

Proportion of zeros in Sample 1 =0.7843 Proportion of zeros in Sample 2 =0.490251 cases

Difference in proportions = 0.2941

Standard Error of Difference = 0.0638

z value for confidence interval =1.9600

Confidence Interval 95% = (0.1691,0.4192)

There is a significant difference, increase, in the proportion of patients having more than one stool per day before and after CHE.

Reporting Results

- Indicate the software used for analysis.
- Report the results for test statistic, degrees of freedom and p value. Also provide the confidence interval.
- p value for non-parametric tests should be interpreted with caution.

Summary

Nature of problem	Test		
Interval & normal	One –sample t test		
Ordinal or interval, non normal	Sign test		
Dependent groups; interval & normal	Paired t test		
Dependent groups; ordinal or interval	Wilcoxon signed rank test, Sign test		
Single proportion	z approximation		
Dependent groups; proportion	McNemar		

www.epilepsy.va.gov/Statistics

Questions/Comments

Rizwana.Rehman@va.gov

(919) 286-0411 ext: 5024

Next lecture's highlights

Research questions about two groups