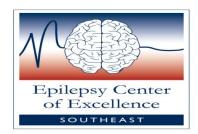


www.epilepsy.va.gov/Statistics

Statistics in Evidence Based Medicine


Lecture 2: Descriptive Summary Statistics

Rizwana Rehman, PhD

Regional Statistician Southeast Epilepsy Center of Excellence Durham VA Medical Center, Durham NC

> Rizwana.Rehman@va.gov (919)286-0411 ext: 5024

Overview

- Types of data and significant figures
- Frequency tables and distributions
- Descriptive summary statistics
 - Measures of central tendency
 - Mean, Median, Mode
 - Measures of dispersion
 - Range, Interquartile Range, Standard Deviation
- Reporting summary statistics
- Using Excel and Openstat

Types of Data

Quantitative

Continuous

height, age

Discrete

number of seizures per month

Qualitative

Categorical

Ordinal

grade of breast cancer

Nominal

sex, blood group

Significant Figures

- After performing a computation only the first few non-zero digits of a number are important and we call these significant figures.
- The leading zeros in a number are not significant.
 0.001096 has four significant figures. To three significant figures the number is 0.00110.

http://www.usca.edu/chemistry/genchem/sigfig.htm

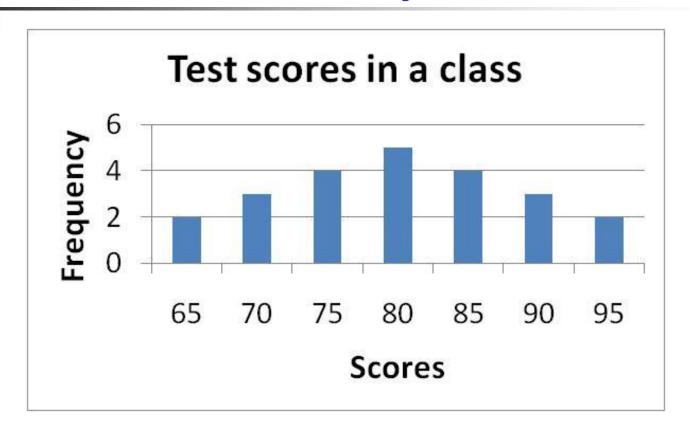
Audio Information: Dial 1-888-767-1050 Conference ID 59058061

Frequency Table/Distribution

A table showing the frequency of values in a data set.

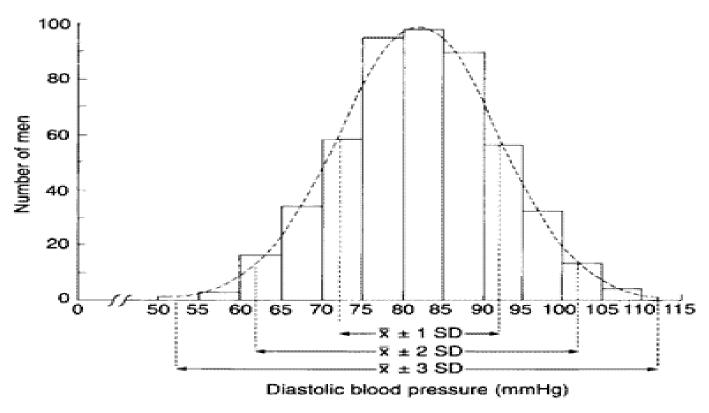
Example: Test scores in a class (n = 23)

65, 65, 70, 70, 70, 75, 75, 75, 75, 80, 80, 80, 80, 80, 80, 85, 85, 85, 85, 90, 90, 90, 95, 95

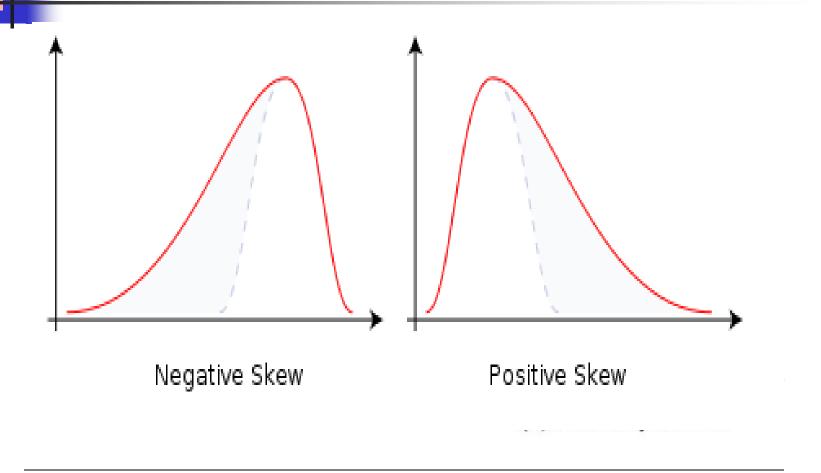


Frequency Distribution of Test Scores

Test Scores	Frequency
65	2
70	3
75	4
80	5
85	4
90	3
95	2



Excel Column Graph of Test Scores


Audio Information: Dial 1-888-767-1050 Conference ID 59058061

Normal Frequency Distribution

Data distribution for 500 men Statistics at Square One: Figure 2.1

Asymmetrical or Skewed Distributions

Audio Information: Dial 1-888-767-1050 Conference ID 59058061

Summary Statistics for Distributions

- Central Tendency
 - Where is the center?
 - What value is most common?
 - What should we use?
- Dispersion
 - How disperse is data?
 - What shape is it?
 - What should we use?

Median: Where is Center?

- Median (midpoint) divides a dataset into two groups. Half of the data values lie below the median and half lie above the median.
- No conventional symbol. Sometimes Md
- Median is known as measure of location.
- Median may not belong to the data set under investigation.

Median for Odd Number of Values

Find the median of nine values:

0.6, 2.6, 1.1, 0.1, 0.4, 1.3, 1.2, 2.2, 1.9

Step one: Arrange observations in ascending order 0.1, 0.4, 0.6, 1.1, 1.2, 1.3, 1.9, 2.2, 2.6

Step two: Look for the middle (n+1)/2th value

Answer: Median is 1.2 (in the data set)

Median for Even Number of Values

Find the median of ten values:

0.6, 2.6, 1.1, 0.1, 0.4, 1.3, 1.2, 2.2, 1.9, 1.9

Step one: Arrange observations in ascending order 0.1, 0.4, 0.6, 1.1, <u>1.2, 1.3</u>, 1.9, 1.9, 2.2, 2.6

Step two: Take the average of middle two observations. (1.2+1.3)/2

Answer: The median is 1.25 (not in the data set)

Properties of Median

Median is robust to extreme values (outliers).

Median for 1.2, 10, 1.3, 1.3, 2.3 is 1.3.

Median for 1.2, 1.3, 1.3, 2.3 is 1.3.

It is the closest point to all the observations.

No other point will give us smaller difference than 1.1

Median is less efficient; consider mean

Arithmetic Mean or Average

 Add all the observations and divide sum by number of observations to get the mean.

$$\overline{x} = \frac{\sum x}{n}$$

The mean of numbers 1.2, 10, 1.3, 1.3, 2.3 is 3.22 The mean of numbers 1.2, 1.3, 1.3, 2.3 is 1.525

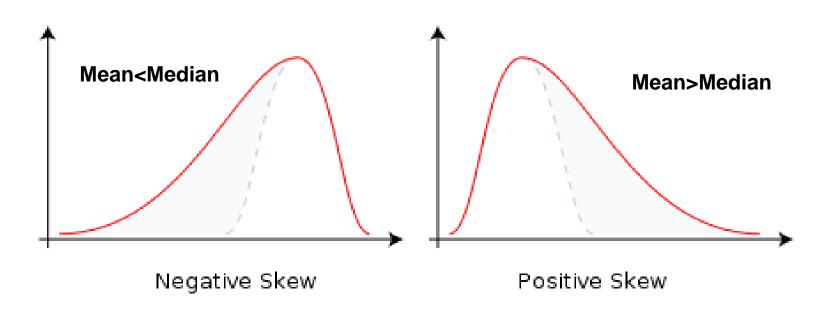
- Mean is very sensitive to outliers.
- Mean of a population is denoted by μ

Audio Information: Dial 1-888-767-1050 Conference ID 59058061

Properties of Mean

 Sum of the deviations of a set of values from their arithmetic mean is 0.

The mean of numbers 1.2, 1.3, 1.3, 2.3 is 1.525 (1.2-1.525)+(1.3-1.525)+(1.3-1.525)+(2.3-1.525)=0


 It minimizes sum of squares of deviations from a point.

 $|1.2-1.525|^2+|1.3-1.525|^2+|1.3-1.525|^2+|2.3-1.525|^2=0.8075$

No other point will give us smaller squared difference ₁₆ than 0.8075.

Using Median or Mean?

- For a symmetrical distribution (normal) mean and median both are equal
 - For a skewed distribution use median

Mean & Median both Useful!

Consider a variable that takes value one for males and zero for females

1,0,0,1,1,0

Mean is 0.57 & Median is 1

- Mean tells us the proportion of males
- Median tells us which group contained more than 50% of the people

A Misconception about Mean

Mean shouldn't be used for ordinal data

Mean from ordered categorical variables can
be more useful some times.

Consider rating of a lecture on a scale of 1 (poor) to 5 (excellent). Mean is a better summary statistic than median.

Mode is the value that occurs most frequently

- The mode of data set 1, 3, 4, 5, 6, 6, 6, 2 is 6
- The modes of data set 1, 3, 4, 4, 4, 6, 6, 6 are 4
 and 6

Mode is used for bimodel distributions

Measure of Spread: The Range

Range is the difference between smallest and largest observation.

For data set 1, 2, 3, 10, 12 the range is 11.

Difference between the first and third quartiles is known as interquartile range (IQR). It contains the central 50% of observations.

- Quartiles are points that divide the data into four quarters.
- 25% of observations lie below first quartile.
- 50% of observations lie below the second quartile (median) and 50% lie above it.
- 25% of observations lie above third quartile.

Computing Quartiles

- Arrange the observations in ascending order.
- For n observations (n+1)/4 th observation is the first quartile.
- (n+1)/2 th observation is the second quartile.
- 3(n+1)/4 th observation is the third quartile.

Interquartile Range for Odd n

```
For data set 1, 1.5, 2, 2.75, 4, 5.5, 7.5

n=7

(n+1)/4 <sup>th</sup> observation is 2<sup>nd</sup> observation \rightarrow Q<sub>1</sub>=1.5

3(n+1)/4 <sup>th</sup> observation is 6<sup>th</sup> observation \rightarrow Q<sub>3</sub>=5.5

IQR=5.5-1.5=4.0
```


Interquartile Range for Even n

```
For data set 1, 1.5, 2, 2.75, 4, 5.5, 7.5, 8
n=8
(n+1)/4 th observation is 2.25th
observation \rightarrow Q<sub>1</sub>=1.5+0.25(2-1.5)=1.625
3(n+1)/4 th observation is 6.75th observation
  \rightarrow Q<sub>3</sub>=5.5+0.75(7.5-5.5)=7.0
                IQR=7.0-1.625=5.375
```

Standard Deviation SD

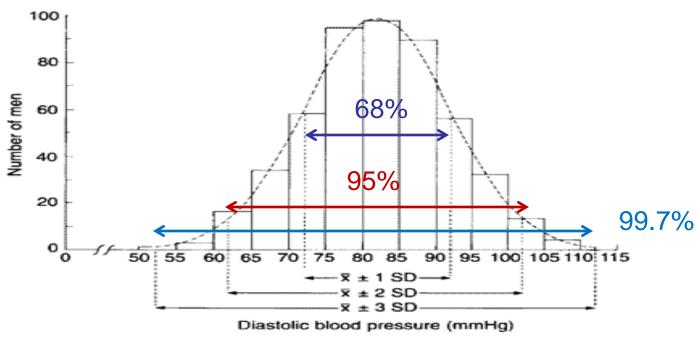
 Standard Deviation is a measure of spread of data about their mean.

$$SD = s = \sqrt{\frac{\sum(x - \overline{x})^2}{n - 1}}$$

- The name of statistic before taking the square root is variance.
- $\begin{tabular}{ll} \hline & The standard deviation of a population is denoted by σ \\ \hline \end{tabular}$

Computing Standard Deviation

X	$x-\bar{x}$	$(x-\bar{x})^2$
1	1-3 = -2	4
2	2-3 = -1	1
3	3-3 = 0	0
4	4-3 = 1	1
5	5-3 = 2	4
Total = 15	Total = 0	Total = 10


$$SD = \sqrt{\frac{\Sigma(x - \bar{x})^2}{n - 1}} = \sqrt{\frac{10}{4}} = \sqrt{2.5} \approx 1.58$$

Importance of Standard Deviation for Bell Shaped Distribution

- 68% of observations lie between the mean 1 SD
- 95% of observations lie between the mean 2 SD
- 99.7% of observations lie between the mean 3 SD

Dispersion of Data in Normal Distribution

Mean=82mmHG, SD=10mmHG, n= 500

Mean 1 SD=(72-92) contains approximately 340 observations Mean 2 SD=(62-102) contains approximately 475 observations Mean 3 SD=(52-112) contains approximately 499 observations

The coefficient of variation is obtained from dividing *SD* by the mean and multiplying by 100. It is a measure of relative spread in data.

$$CV = \frac{SD}{\bar{x}} \times 100$$

Use CV when comparing data sets with different units or widely different means

Example: The Coefficient of Variation CV

shock index data: mean = 0.69, SD = 0.20 systolic blood pressure data: mean = 138, SD = 0.26

CV for shock index data = 29.0%
CV systolic blood pressure data = 18.8%

Basics and Clinical Biostatistics: Chapter 3
Kline et al. (2002)

Using Different Measures of Dispersion

- Use standard deviation with mean for a symmetric distribution only.
- With skewed data use median and interquartile range. Also report mean.
- Use range to show extreme values.
- For comparison of distributions measured on different scales use coefficient of variation.

Displaying Summary Statistics

 Display mean to one more significant digit than data.

The mean of numbers 1.2, 1.3, 1.3, 2.3 is 1.525; report mean=**1.53**

 Display standard deviation to two more significant figures than data.

The SD Of number 1, 2, 3, 4, 5 is 1.58113883008419----. report standard deviation=**1.58**

Displaying Summary Statistics

When quoting a range or interquartile range, give the two numbers that define it.

```
For data set 1, 2, 3, 10, 12 report range= (1–12) or range=1 to 12 For data set 1, 1.5, 2, 2.75, 4, 5.5, 7.5 report interquartile range=(1.5–5.5)
```

 Median and IQR should be given to the same accuracy as the data or one extra significant digit if average of two numbers is needed.

For data set 1, 1.5, 2, 2.75, 4, 5.5, 7.5, 8 report median=3.375 interquartile range =(3.125–7.0)

Checking Skewness using Summary Statistics

If mean or median is near the lower limit of range or interquartile range, then distribution is positively skewed and vise versa.

```
median=0.46, mean=0.51,SD=0.22, range=0.51 to 1.66, interquartile range=0.35 to 0.60
```

positive skewness

http://www-users.york.ac.uk/~mb55/msc/applbio/week3/sd_text.pdf

median=9, mean=8.2,SD=4.367, range=1 to 15, interquartile range=6.25 to 10.75

data set: 1,2,6,7,8,10,10,11,12,15 negative skewness

Using Excel for Today's Lecture

Adding in Data Analysis tool box

http://cameron.econ.ucdavis.edu/excel/ex01access.html

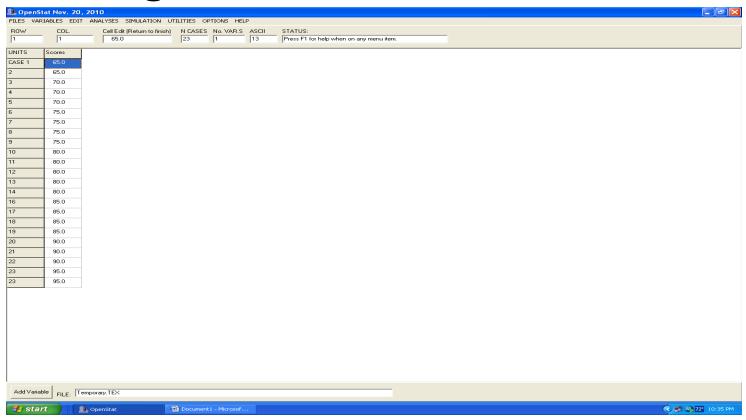
For descriptive summary statistics look at

http://cameron.econ.ucdavis.edu/excel/ex21descriptivestatistics.html

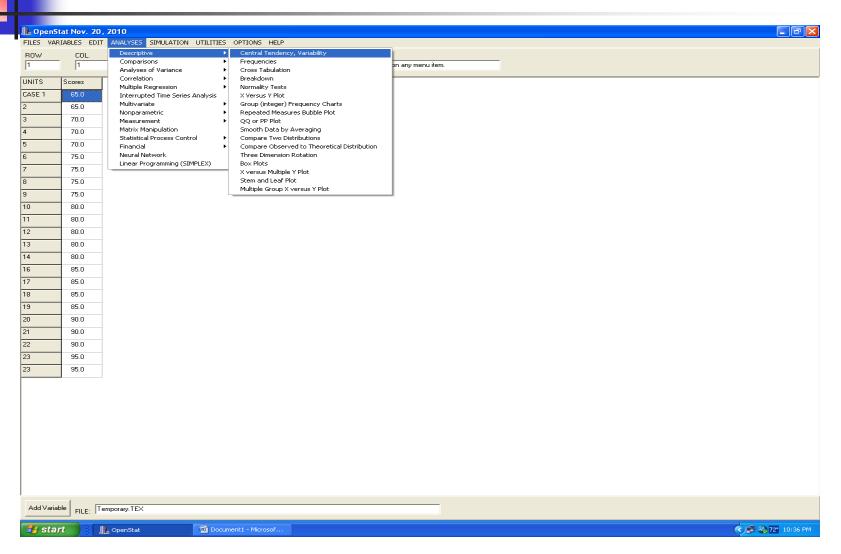
Using Excel 2007 for Summary Statistics

Test scores in a class

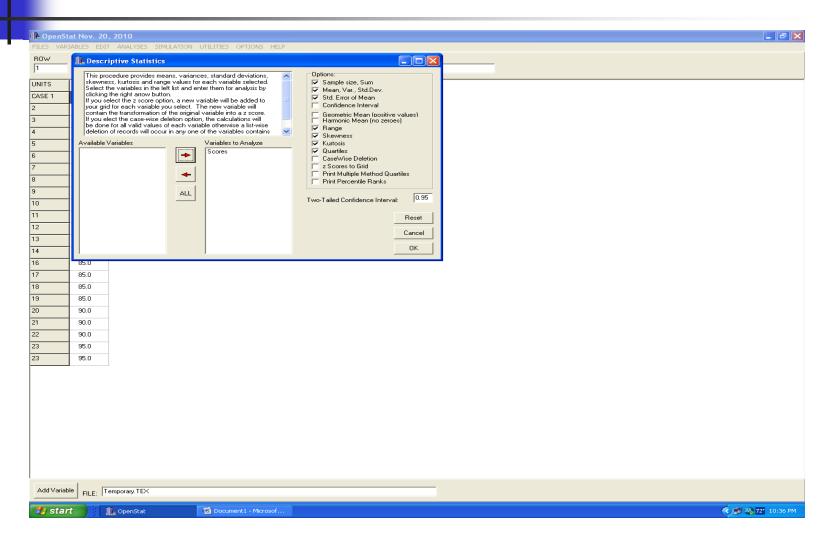
65, 65, 70, 70, 70, 75, 75, 75, 75, 80, 80, 80, 80, 80, 80, 85, 85, 85, 85, 90, 90, 90, 95, 95

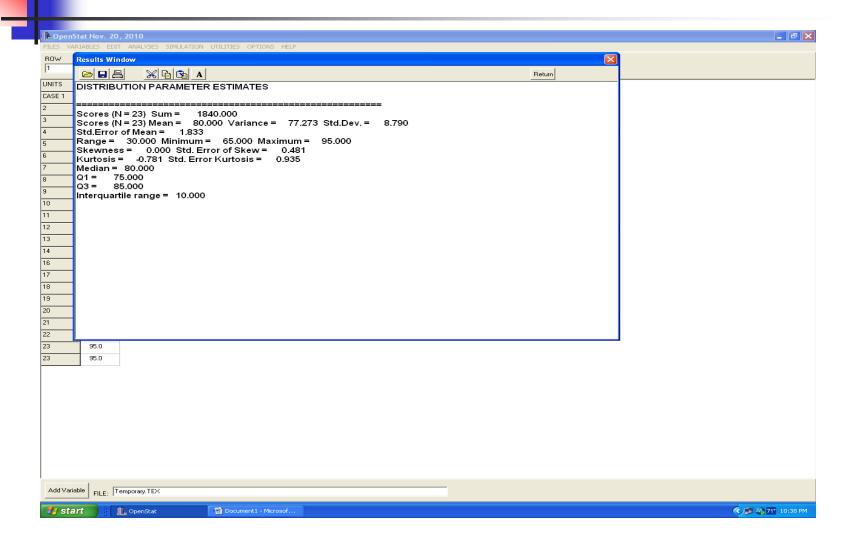

Excel 2007 for Summary Statistics

Column1	
Mean	80
Standard Error	1.832944
Median	80
Mode	80
Standard Deviation	8.790491
Sample Variance	77.27273
Kurtosis	-0.78082
Skewness	O
Range	30
Minimum	65
Maximum	95
Sum	1840
Count	23


Using Openstat

http://www.statprograms4u.com/


Entering data


Choose Main Menu

Choose Options

Results

Thank you!

Questions/Comments

Rizwana.Rehman@va.gov

(919) 286-0411 ext: 5024

For more information, program materials, and to complete evaluation for CME credit visit

www.epilepsy.va.gov/Statistics