

Statistics in Evidence Based Medicine

Lecture 1: Why learn statistics?

Rizwana Rehman, PhD

Regional Statistician Southeast Epilepsy Center of Excellence Durham VA Medical Center, Durham NC

Rizwana.Rehman@va.gov

(919)286-0411 ext: 5024

- Course objectives, textbooks/topics covered
- Definition of Evidence Based Medicine (EBM)
- Spotting statistical spin in research studies
- Some misunderstood statistical terms
- Types of data

- Learn some basic medical statistics
- Become a better reader/smart user of medical statistics
- Become an improved researcher
- Practice Evidence Based Medicine (EBM)

Course Topics

- Data types
- Summarizing data/Descriptive statistics
- Data display methods
- Terminology for inferential statistics
- Hypothesis testing/Power
- Research questions about one group
- Research questions about two groups
- Study designs

Audio Information: Dial 1-888-767-1050 Conference ID 59058061

Course Textbooks

Main: Statistics at Square One (2010)

M J Campbell & T D V Swinscow

http://www.phsource.us/PH/EPI/Biostats/

Software: Openstat/Excel

http://www.statprograms4u.com/

Secondary (if interested):

Basic and Clinical Biostatistics (2004)

Beth Dawson, Robert G. Trapp

http://www.accessmedicine.com/resourceTOC.aspx?resourceID=62

"Evidence-based medicine is the integration of **best** research evidence with clinical expertise and patient values"

David Sackett

Oxford Centre for Evidence-Based Medicine

Evidence Based Medicine (EBM)

"Evidence-based medicine (EBM) is the use of mathematical estimates of the risk of benefit and harm, derived from high quality research on population samples, to inform clinical decision-making in the diagnosis, investigation or management of individual patients."

Trisha Greenhalgh

How to Read a Paper the basics of evidence –based medicine; Wiley-Blackwell 2010

Variability in biological data

In medical context detect/separate the actual effect from one by chance in a comparison

Generalization of results

To ensure that the findings are comparable and generalizable

Purpose for Reading Papers

- Satisfy intrinsic curiosity
- Answer questions that pertain to clinical practice
- Survey literature prior to starting a project

Different Types of Papers

- Drug trials & interventions
- Diagnostics & screening tests
- Summary of other papers
- Guidelines for clinicians
- Economic analysis
- Qualitative research

Majority of the papers contain statistical analyses

Questions Answered After Reading a Paper

- What was the research question and why was the study needed?
- What was the research design?
- Was the research design appropriate to the question?
- Did statistical analysis consider the research design?
- If results were statistically improved, were they clinically worthwhile?

Spotting Spin in Papers

- What point of view is the author trying to sell?
- Selection/Omission
- Confusion or misuse of statistical terms
- Do the conclusions logically follow from the statistical analysis?
- Are comparisons made like for like?
- Are there percentages without the absolute values?
- Overly simplistic view about cause and effect
- Ambiguous phrases such as 'could be', 'as high as', 'at least', 'includes', 'much more'

Spotting Spin in Papers

- Lack of details in the 'METHOD' section sample size, source, actual questions asked, etc.
- Cut-down, uneven or missing chart axis
- Unlikely statistics, results too good to be true
- Unsourced statistics
- Unspecified averages (mean or median)
- Ignoring all factors in the analysis

How to spot spin and inappropriate use of statistics

Paul Bolton

Some Misunderstood/Misused Statistical Terms

- Bias ≠ Inclination
- Parameter ≠ Perimeter
- Correlation ≠ Regression
- Normal distribution ≠ 'Normal' in ordinary sense
- Statistically significant ≠ Large or important
- Precision ≠ Accuracy
- Standard deviation ≠ Standard error
- Quarter # Quartile
- Random ≠ Without pattern

Specific reporting strategies to highlight

- Experimental treatment is beneficial despite a statistically nonsignificant difference in the primary outcome
- Distract the reader from nonsignificant results

Isabelle Boutron; Susan Dutton; Philippe Ravaud& Douglas G. Altman

Reporting and Interpretation of Randomized Controlled Trials (RCTs) With Statistically Non significant Results for Primary Outcomes

JAMA. May 2010

Christopher Weir & Gordon Murray

Fraud in Clinical Trials detecting it and preventing it

Significance Dec 2011

TYPES OF DATA

Audio Information: Dial 1-888-767-1050 Conference ID 59058061

Continuous Data

Discrete Data

Categorical Nominal Data

Categorical Ordinal Data

Two Types of Data

Quantitative

Continuous blood pressure, height

Discrete number of VA patients

Qualitative

Nominal gender, race

get better, stay the same, get worse

Ordinal

Questions/Comments

Rizwana.Rehman@va.gov

(919) 286-0411 ext: 5024

For more information, program materials, and to complete evaluation for CME credit visit

www.epilepsy.va.gov/Statistics