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Course Outline 

Understanding logistic regression in five lectures 

Difference between relative risk and odds ratio , 
marginal and conditional odds ratios,  

 terminology and interpretation of logistic regression  

 

Suggested Book: Logistic Regression A Self-Learning Text 
by Kleinbaum & Klein 

Third Edition Springer 
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Today’s Lecture 

 Comparison of linear and logistic regressions 

 Logistic regression model 

 Interpretation of coefficients 

 Examples 

 Summary 
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Recap: Linear Regression for Continuous 
Outcome 
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y = - 82.49+1.033x 
r² = 0.7162 

r= 0.864 
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Restriction: Assumptions 



Binary Outcomes 

 A binary data takes only one of two 
values 

 Examples:  

 Alive or dead, Sick or Well, Exposed or 
Unexposed etc 

We can find proportions for binary 
outcomes  
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Why Linear Regression is not Suitable for a 
Binary Outcome? 

 A linear regression will predict values outside the 
acceptable range (e.g. predicting probabilities 
outside the range 0 to 1)  

 Since the dichotomous experiments can only 
have one of two possible values for each 
experiment, the residuals will not be normally 
distributed about the predicted line (a violation 
of linear regression assumptions) 
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Properties of Logistic Regression 

 Logistic regression is used for a dichotomous 
(binary) outcome variable 

 Logistic regression produces a logistic curve 
whose values are between 0 and 1 

 No assumptions required for normality of 
predictors or variance of predictors 

 Can handle any number of categorical or 
continuous independent variables 
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Shape of a Logistic Curve 
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e= base of natural logarithm  

http://www.saedsayad.com/logistic_regression.htm 



Relationship between Odds and Probability 

 To calculate the odds (o) from Probability 
(p) 

Odds=
𝑝

1−𝑝
 

 To calculate the probability from Odds 

Probability=
𝑜

1+𝑜
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Moving from Logistic Curve to Odds 

 p = 
1

1+𝑒−(𝑏0+𝑏1𝑥)
 



𝑝

1−𝑝
= exp(b0+b1x) = 𝑒𝑏0+𝑏1𝑥 

 

 

 loge(
𝑝

1−𝑝
)=b0+b1x 
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Odds 

Natural 
log of 
odds 

Estimated 
probability  
of response  



Comparison between Linear Regression and 
Logistic Regression 

 Linear Regression: Ordinary least square 
method is used  to compute coefficients of 
the best fit line; Logistic Regression: 
Maximum likelihood estimation of model 
coefficients 

 Linear Regression: r2 is an indicator of the 
goodness of fit of model, Logistic 
Regression: a pseudo r2 can be computed 
for model adequacy but not recommended 
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Interpretation of Intercept b0 

loge(
𝑝

1−𝑝
)=b0+b1X 

 

For a case control study ignore b0  

 For a prospective cohort study b0 is the log 
of the background, or baseline, odds.  

  By background odds we mean the odds 
that would result for a logistic model 
without X.  
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logit of estimated 

probability  



Interpretation of b1 for a Dichotomous X 
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loge(
𝑝

1−𝑝
)=b0+b1X 

 

Odds of disease with risk factor present=𝑒𝑏0+𝑏1  

Odds of disease with risk factor absent=𝑒𝑏0  

Odds Ratio = 
𝑒𝑏0+𝑏1

𝑒𝑏0
 =𝑒𝑏1  

Loge(Odds Ratio) = b1 
 



Interpretation of b1 for a Dichotomous X 

loge(Odds Ratio) = b1 

The estimated regression coefficient b1 is the 
natural log of the odds ratio associated with 
presence of risk.  

Odds Ratio=𝑒𝑏1   
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Example: Smoking and Lung Cancer 

Male Lung Cancer & Smoking (Doll and Hill 1950) 
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Odds Ratio=
647×27

2×622
 = 14.04 

The odds of lung cancer in smokers 
were 14 times the odds of lung cancer 
in non-smokers 

 



Logistic Regression for Association 
between Lung Cancer and Smoking 

loge(
𝒑

𝟏−𝒑
) = -2.6025+2.6419×Smoking 

-2.6025 is the log odds of developing lung cancer  

2.6419 is the increment to the log odds for smokers 

Moving from non smokers to smokers increases the 
log odds (logit) of lung cancer by 2.6419 

loge(odds ratio)=2.6419 

Estimated odds ratio for smokers vs. non smokers= 
e 2.6419=14.04 

 

16 



Interpretation of Regression Coefficient 
for a Continuous Predictor 

 loge(
𝑝

1−𝑝
)=b0+b1X 

b1 represents the change in log odds that 
would result from a one unit change in the 
variable X 
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Example: Kyphosis and Age 

Hastie and Tibshirani (1990) 

Purpose: Determine age (in months) as a risk 
factor for Kyphosis 

18 subjects with Kyphosis; 12, 15, 42, 52, 59, 
73, 82, 91, 96, 105, 114, 120, 121, 128, 130, 
139, 139, 157 

22 subjects without Kyphosis; 1, 1, 2, 8, 11, 
18, 22, 31, 37, 61, 72, 81, 97, 112, 118, 127, 
131, 140, 151, 159, 177, 206 
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Logistic Regression for Kyphosis 

loge(
𝒑

𝟏−𝒑
)= -0.5727+0.00430×Age 

loge(odds ratio)=0.0043 

As the age increases by one month the expected 
change in log odds is 0.00430. 

Estimated Odds Ratio= e0.0043=1.004 

Interpretation of Odds Ratio Like Relative Risk: 
As the age increases by one month the odds of 
Kyphosis increase by .04%. Age is not associated 
with Kyphosis.  
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What if Age Changed by c Months? 

Consider the risk associated with a c months 
increase 

Odds Ratio = 𝑒𝑐𝑏1  

Suppose c=6 months 

Estimated Odds Ratio = 𝑒6×0.0043= 1.026 

The risk for Kyphosis increases by 2.6% for 
each 10 months increase in age 
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Recap: Confounding 

 Means mixing 

 Distortion (an error) of an association between 
two variables (exposure and outcome) due to a 
third factor 

 May cause an overestimate of strength of 
relationship or vise versa 

 May be responsible for all or partial relationship 

 Can be controlled in study design and in analysis 
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Recap: Marginal and Conditional Odds Ratios 

Given three variables A, B, C 

 Marginal odds ratio between A and B is  
obtained by ignoring the variable C 

 Conditional odds ratios are obtained by  

   computing odds ratios between A and B         
 at different levels of C 
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Recap: Confounding and Conditional 
Odds Ratios 

 When marginal odds ratio is different from 
conditional odds ratios and conditional odds 
ratios are similar then confounding (a third factor 
participating in the association between a risk 
factor and disease) may be present. 

 For a factor to qualify for a confounder the 
percent difference of marginal odds ratio from 
conditional odds ratio should be more than 10%. 

 We can compute an adjusted odds ratio which 
takes confounding into consideration. 
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Adding a Confounder in the Logistic Regression  

X1 and X2 are both dichotomous with 0, 1 coding  

loge(
𝑃

1−𝑃
)=b0+b1X1+b2X2 

For a fixed level of X2, when we increase X1 by one 
unit, the log odds of outcome change by b1. 

For a fixed level of X1, when we increase X2 by one 
unit, the log odds of outcome change by b2. 
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Example: Age as Confounding Factor 
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D=Heart 
Disease=1 

D=No Heart 
Disease=0 

E=Inactive=1 10 90 

E=Active=0 35 465 

Heart Disease=1 Heart Disease=0 

E=Inactive=1 36 164 

E=Active=0 25 175 

Age > 50, Age C = 1 

Age < 50, Age=C = 0 

ORED|C=0 =1.48 

ORED|C=1 =1.54 Common 
OR=1.52 



Logistic Regression for Confounding 

loge(
𝒑

𝟏−𝒑
) = -2.592+0.415×Inactive+0.6547×Age 

Odds ratio for physical inactivity adjusted for age 
=𝑒0.415=1.52 (Age adjusted odds ratio) 

For a fixed age group the odds of CHD among 
inactive people were 1.52 times the odds of 
CHD among active people.  

Odds ratio for age adjusted for physical inactivity 
=𝑒0.6547=1.93  (Physical activity status adjusted 
odds ratio) 
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Summary 

 Logistic regression is used for a binary 
response variable 

 Coefficients of logistic regression provide 
estimates of odds ratios. These odds ratios 
are adjusted when there are more than one 
predictors. 

 For given values of X variables we can also 
compute probability of the response 
variable Y. 
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Uses of Logistic Regression in Study Designs  

 Logistic modeling is used for follow up, case control and 
cross sectional studies 

 For a follow up study with rare disease assumption 
odds ratio will estimate relative risk 

 When rare disease assumption does not hold, 
alternative methods to compute adjusted relative risk 
from logistic modeling have been proposed  

 Used to adjust the effects of confounders 

 Used to study the simultaneous effect of a number of 
categorical variables on the outcome  

 To predict a value of an outcome given inputs. 
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Questions/Comments 

Rizwana.Rehman@va.gov 

(919) 286-0411 ext: 5024 
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Thank you for being patient ! 
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