

José E. Cavazos, MD PhD San Antonio VA Epilepsy Center of Excellence (VISN 17) Audie L. Murphy VA Medical Center

Objectives:

- Identify at least three drug-drug interactions in AEDs.
- Able to use at least 2 AEDs as adjunctive therapy with synergistic effect.
- Able to identify idiosyncratic reactions in AEDs.
- Able to identify the effects AEDs have on comorbidities.

Drug Interactions of AEDs

 To predict Drug Interactions of AEDs, one needs to understand the pharmacological properties of AEDs including their pharmacokinetics and pharmacodynamics.

Definitions:

- AEDs: Antiepileptic Drugs are used for the treatment of Epilepsy and Seizures.
- Pharmacokinetics: Study of the movement and effects of a drug across compartments in the body.
- Pharmacodynamics: Study of the response of a drug when it has been delivered to the site of mechanism of action.

Definitions:

- Pharmacokinetics: Examines absorption, distribution, metabolism and clearance of drugs.
 - Examples: Serum concentration of an AED; proteinbinding.
- Pharmacodynamics: Examines receptor binding and effects on physiological or cellular properties from drugs.
 - Examples: Efficacy decreasing seizure rate; Sedation

TABLE 65-4 Antiepileptic Drug Pharmacokinetic Data

AED	t _{1/2} (h)	Time to steady state (days)
• Carbamazepine	12 M; 5-14 Co	21–28 for completion of auto-induction
Ethosuximide	A 60; C 30	6–12
Felbamate	16-22	5–7
Gabapentin ^a	5-40 ^b	1–2
Lacosamide	13	3
Lamotrigine	25.4 M	3–15
Levetiracetam	7–10	2
Oxcarbazepine	3–13	2
Phenobarbital	A 46–136; C 37–73	14–21
Phenytoin	A 10-34; C 5-14	7–28
Pregabalin	A6-7 ^b	1–2
Primidone	A 3.3–19; C 4.5–11	1–4
Rufinamide	6-10	2
Tiagabine	5–13	
Topiramate	18-21	4–5
Valproic acid	A 8–20; C 7–14	1–3
Vigabatrin	5-8	N/A
Zonisamide	24-60	5–15

Rogers SJ, Cavazos JE. In DiPiro's Pharmacotherapy, 8th Edition, McGraw-Hill, 2011

TABLE 65-4 Antiepileptic Drug Pharmacokinetic Data

	Clinically Important	Protein
AED	Metabolite	Binding (%)
Carbamazepine	10,11-epoxide	40-90
Ethosuximide	No	0
Felbamate	No	~25
Gabapentin ^a	No	0
Lacosamide	No	<15
Lamotrigine	No	40-50
Levetiracetam	No	<10
Oxcarbazepine	10-hydroxy-carbazepine	40
Phenobarbital	No	50
Phenytoin	No	90
Pregabalin	No	0
Primidone	PB	80
Rufinamide	No	26-35
Tiagabine	No	95
Topiramate	No	15
Valproic acid	May contribute to	90-95
	toxicity	binding
		saturates
Vigabatrin	No	0
Zonisamide	No	40-60

Rogers SJ, Cavazos JE. In DiPiro's Pharmacotherapy, 8th Edition, McGraw-Hill, 2011

Main principles:

- It takes 5 half-lives to get to 95% of steady state,
- IV load is to get to steady state ASAP,
- Serum concentrations can be measured at 1-2 hrs,
- Concentrations that are "therapeutic" are trough levels,
- Maintenance drug should be given at 2 hrs after load

- Main principles:
 - If AED has a high protein binding, oral dosing with a meal or a protein supplement will delay absorption.
 - Some drugs have higher affinity to protein than others. If Valproate IV is given in a patient taking chronically Phenytoin, the Valproate IV will displace Phenytoin from binding sites, creating a transient Phenytoin toxicity with no change in total (but an increase "free") Phenytoin level.

TABLE 65-7 Antiepileptic Drugs Elimination Pathways and Major Effects on Hepatic Enzymes

Antiepileptic Drugs	Major Hepatic Enzymes
Carbamazepine	CYP3A4; CYP1A2; CYP2C8
Ethosuximide	CYP3A4
Felbamate	CYP3A4; CYP2E1; other
Gabapentin	None
Lacosamide	CYP2C19
Lamotrigine	GT
Levetiracetam	None (undergoes non-hepatic hydrolysis)
Oxcarbazepine (MHD is active	Cytosolic system
oxcarbazepine metabolite)	
Phenobarbital	CYP2C9; other
Phenytoin	CYP2C9; CYP2C19
Pregabalin	None
Rufinamide	Hydrolysis
Tiagabine	CYP3A4
Topiramate	Not known
Valproate	GT; β -oxidation
Vigabatrin	None
Zonisamide	CYP3A4

TABLE 65-7 Antiepileptic Drugs Elimination Pathways and Major Effects on Hepatic Enzymes

Antiepileptic Drugs	Induced	Inhibited
Carbamazepine	CYP1A2; CYP2C; CYP3A; GT	None
Ethosuximide	None	None
Felbamate	CYP3A4	CYP2C19; β -oxidation
Gabapentin	None	None
Lacosamide	None	None
Lamotrigine	GT	None
Levetiracetam	None	None
Oxcarbazepine (MHD is active oxcarbazepine metabolite)	CYP3A4; CYP3A5; GT	CYP2C19
Phenobarbital	CYP3A; CYP2C; GT	None
Phenytoin	CYP3A; CYP2C; GT	
Pregabalin	None	None
Rufinamide	CYP3A4 (weak)	CYP2E1 (weak)
Tiagabine	None	None
Topiramate	CYP3A (dose dependent)	CYP2C19
Valproate	None	CYP2C9; GT epoxide hydrolase
Vigabatrin	CYP2C9	None
Zonisamide	None	None

- Main principle:
 - Example: Phenytoin is primarily metabolized by CYP 2C9 and 2C19, and Carbamazepine induces all CYP 2C hepatic isoenzymes. The effect of adding Carbamazepine to chronic Phenytoin will result in a reduction of Phenytoin level, due to an increase efficiency of 2C9 and 2C19 metabolism.

AEDs that induce CYP 3A4

- Carbamazepine
- Felbamate
- Oxcarbazepine
- Phenobarbital
- Phenytoin
- Rufinamide (weak)
- Topiramate (dose dependent)
- Lamotrigine (over 400 mg/d)

Common Drugs metabolized by CYP 3A4

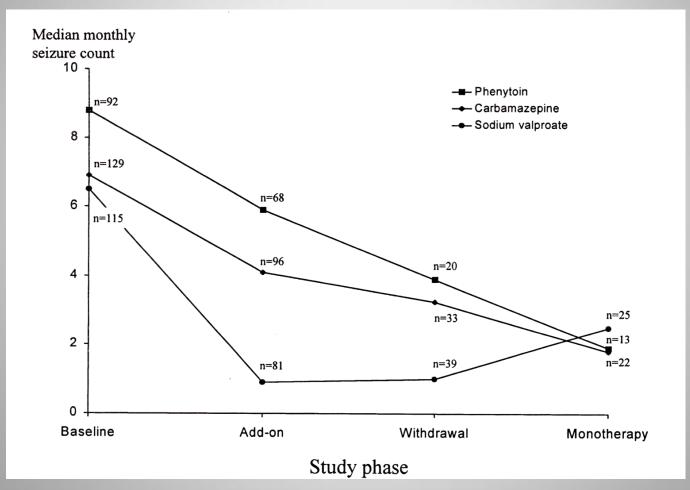
- Alpra-, tria-, midazolam
- Amitriptyline
- Calcium channel blockers
- Carbamazepine
- Corticosteroids
- Digoxin
- Cyclosporin

- Methadone
- Pimozide
- Protease inhibitors (HIV)
- Quinidine
- Statins (cholesterol)
- Terfenadine
- Vitamin D (osteoporosis)
- Some chemotherapy drugs

Synergism and Antagonism of combinations of AEDs

• Synergism: 1 + 1 = 3

You get more effect than the effect of just simply adding to drugs.


Example: 2 sedative drugs are worse combined

• Antagonism: 3 - 1 = 1

You get less effect than the effect of just simply subtracting drugs.

Example: An alerting drug added to sedative drug

LTG 105 Study: LTG added to CBZ or VPA then if success conversion to monotherapy

LTG plasma levels slightly higher add-on in VPA, but identical to CBZ during withdrawal.

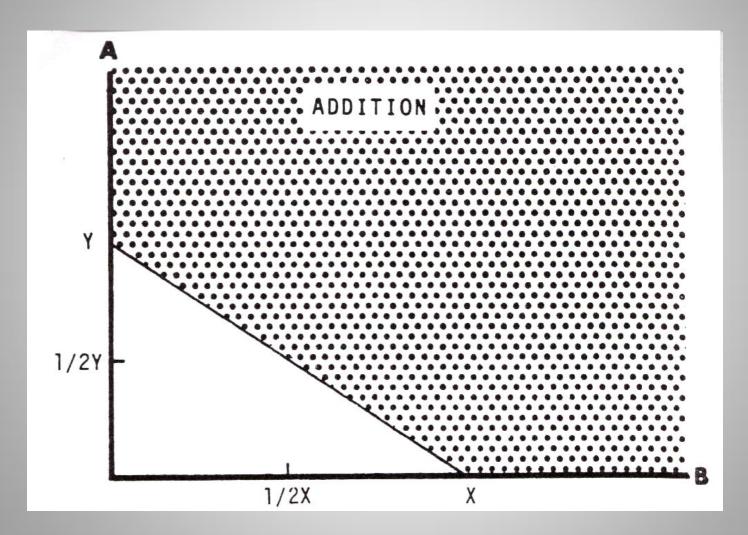
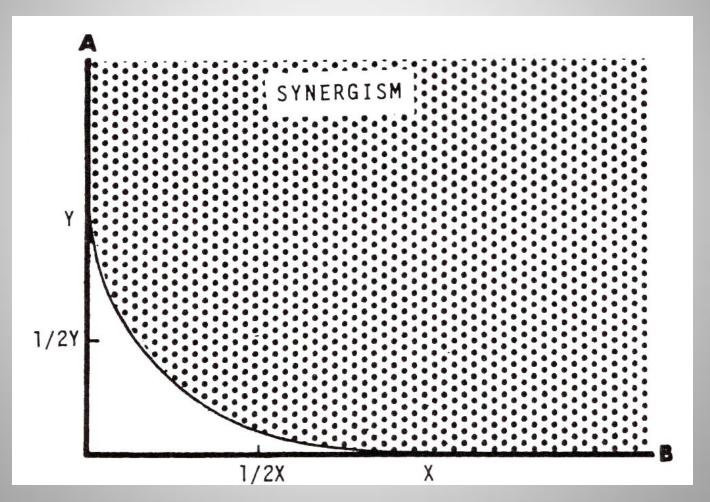
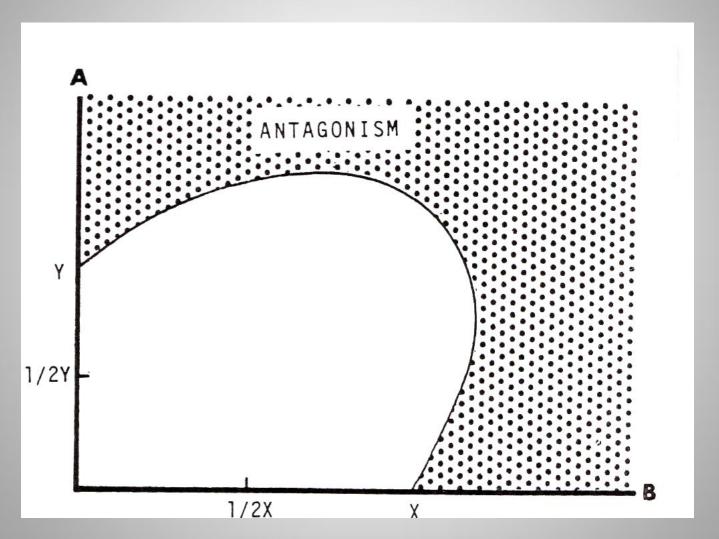
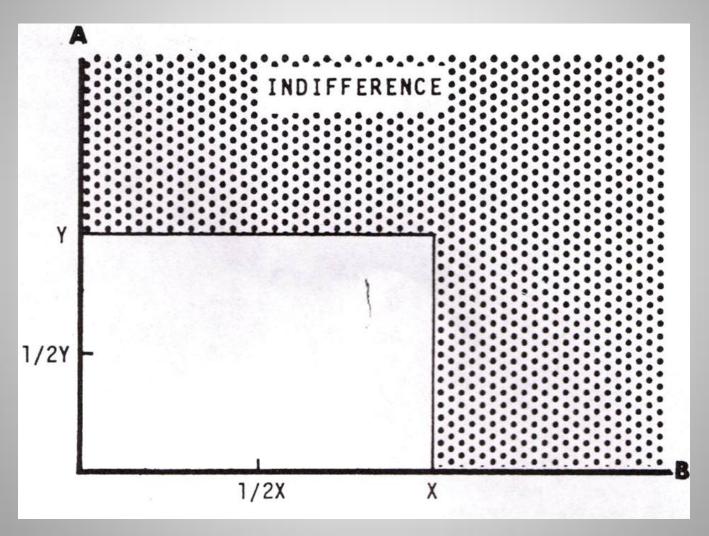

European LTG Conversion to Monotherapy Study

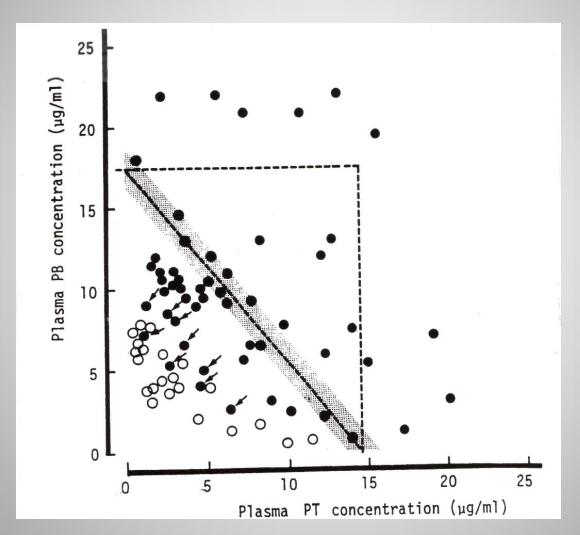
Table 5
Mean seizure reduction and lamotrigine doses and concentrations

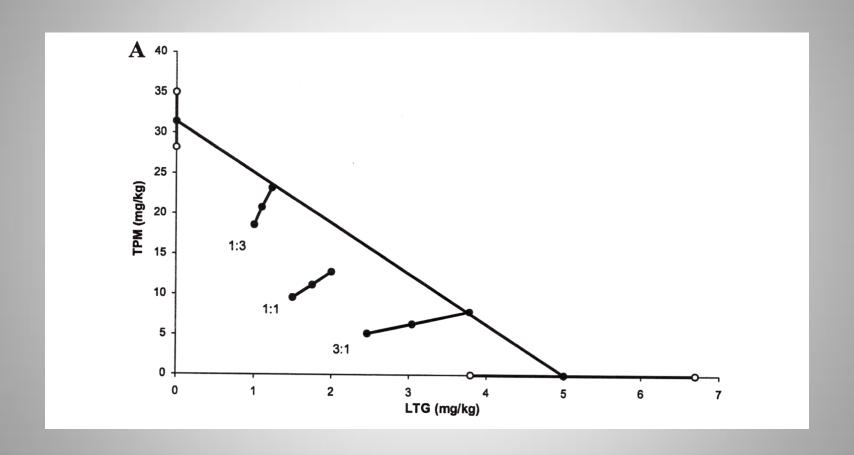

	n	Seizure reduction (%)	LTG dose (mg/day)	LTG concentration (mg/l)
Valproate				
Add-on	115	83	96	4.7
Withdrawal	57	83	120	4.1
Monotherapy	36	60	204	5.5
Carbamazepine				
Add-on	129	43	347	3.6
Withdrawal	50	57	378	4.9
Monotherapy	28	77	373	8.2
Phenytoin				
Add-on	92	34	359	3.3
Withdrawal	31	60	389	5.2
Monotherapy	16	80	397	6.7

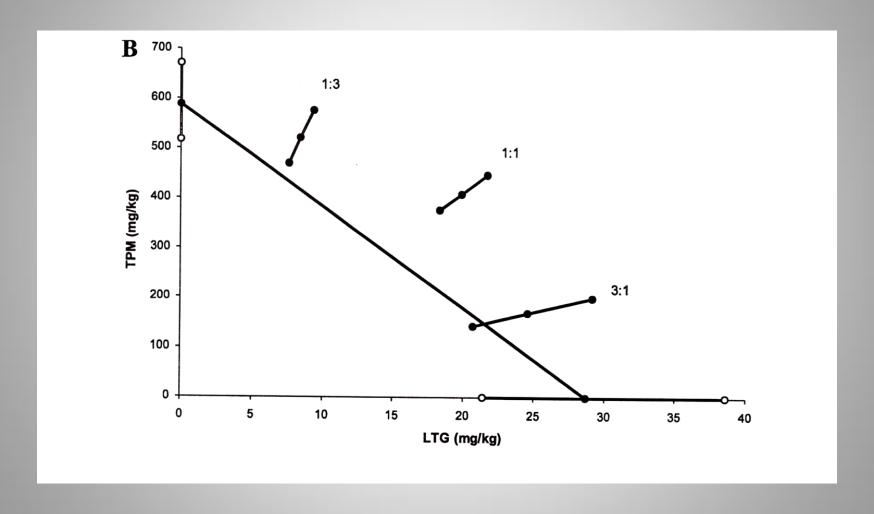
M.J. Brodie, A.W.C. Yuen: Epilepsy Research 26 (1997) 423–432


Isobologram showing addition between drugs X and Y


Isobologram showing synergism between drugs X and Y


Isobologram showing antagonism between drugs X and Y


Isobologram showing no interaction between drugs X and Y


Isobologram showing synergism between drugs PHT and PB

Isobologram showing synergism of efficacy between LTG and TPM

Isobologram showing antagonism of neurotoxicity between LTG and TPM

Common Side Effects and Idiosyncratic Reactions of AEDs

Antiepileptic Drug	Concentration Dependent	Idiosyncratic	Chronic Side Effects
Carbamazepine	Diplopia	Blood dyscrasias	Hyponatremia
	Dizziness	Rash	
	Drowsiness		
	Nausea		
	Unsteadiness		
	Lethargy		
Ethosuximide	Ataxia	Blood dyscrasias	Behavior changes
	Drowsiness	Rash	Headache
	GI distress		
	Unsteadiness		
	Hiccoughs		
Felbamate	Anorexia	Aplastic anemia	Not established
	Nausea	Acute hepatic failure	
	Vomiting		
	Insomnia		
	Headache		

Antiepileptic Drug	Concentration Dependent	Idiosyncratic	Chronic Side Effects
Gabapentin	Dizziness Fatigue Somnolence Ataxia	Pedal edema	Weight gain
Lacosamide	Dizziness Headache Nausea Vomiting PR interval increase on ECG	Liver enzyme elevation	Not established
Lamotrigine	Diplopia Dizziness Unsteadiness Headache	Rash	Not established
Levetiracetam	Sedation Behavioral disturbance	Psychosis (rare)	Not established

Antiepileptic Drug	Concentration Dependent	Idiosyncratic	Chronic Side Effects
Oxcarbazepine	Sedation Dizziness Ataxia Nausea	Rash	Hyponatremia
Phenobarbital	Ataxia Hyperactivity Headache Unsteadiness Sedation Nausea	Blood dyscrasias Rash	Behavior changes Connective tissue disorders Intellectual blunting Metabolic bone disease Mood change Sedation
Phenytoin	Ataxia Nystagmus Behavior changes Dizziness Headache Incoordination Sedation Lethargy Cognitive impairment Fatigue Visual blurring	Blood dyscrasias Rash Immunologic reaction	Behavior changes Cerebellar syndrome Connective tissue changes Skin thickening Folate deficiency Gingival hyperplasia Hirsutism Coarsening of facial features Acne Cognitive impairment Metabolic bone disease Sedation

Antiepileptic Drug	Concentration Dependent	Idiosyncratic	Chronic Side Effects
Pregabalin	Dizziness Somnolence Blurred vision	Pedal edema Creatine kinase elevation Decrease platelets	Weight gain
Primidone	Behavior changes Headache Nausea Sedation Unsteadiness	Blood dyscrasias Rash	Behavior change Connective tissue disorders Cognitive impairment Sedation
Rufinamide	Dizzness Nausea Vomiting Somnolence	Multiorgan hypersensitivity Status epilepticus Leukopenia QT shortening	Not established
Tiagabine	Dizziness Fatigue Difficulties concentrating Nervousness Tremor Blurred vision Depression Weakness	Spike-wave stupor	Not established

Antiepileptic Drug	Concentration Dependent	Idiosyncratic	Chronic Side Effects
Topiramate	Difficulties concentrating Psychomotor slowing Speech or language problems Somnolence, fatigue Dizziness Headache	Metabolic acidosis Acute angle glaucoma Oligohydrosis	Kidney stones Weight loss
Valproic acid	GI upset Sedation Unsteadiness Tremor Thrombocytopenia	Acute hepatic failure Acute pancreatitis Alopecia	Polycystic ovary–like syndrome Weight gain Hyperammonemia Menstual cycle irregularities
Vigabatrin	Permanent vision loss Fatigue Somnolence Weight gain Tremor Blurred vision	Abnormal MRI brain signal changes (infants with infantile spasms) Peripheral neuropathy Anemia	Permanent vision loss
Zonisamide	Sedation Dizziness Cognitive impairment Nausea	Rash Oligohydrosis	Kidney stones Weight loss

AEDs and Co-Morbidites

AEDs and Co-Morbidities

- Check for Drug interactions
 - Enzyme Inducing AEDs (i.e.: Phenytoin) do not mix well with drugs for HIV, cholesterol, chemotherapy, calcium channel drugs, etc.
- Check for Chronic Reactions
 - Gabapentin and Valproate increase weight;
 perhaps not best AEDs in an obese diabetic

Conclusions

Understanding the Pharmacology of AEDs helps:

- Identifying drug interactions of AEDs,
- Combining AEDs more effectively,
- Educating patients about common side effects of AEDs and identifying early idiosyncratic reactions, and
- Predicting common effects of AEDs on comorbidities.